欲证明容斥原理,我们首先要验证以下的关于指示函数的等式:

1

i

=

1

n

A

i

=

k

=

1

n

(

1

)

k

1

I

{

1

,

,

n

}

|

I

|

=

k

1

A

I

(

)

{\displaystyle 1_{\cup _{i=1}^{n}A_{i}}=\sum _{k=1}^{n}(-1)^{k-1}\sum _{\scriptstyle I\subset \{1,\ldots ,n\} \atop \scriptstyle |I|=k}1_{A_{I}}\qquad (*)}

至少有两种方法来证明这个等式:

第一种方法 我们只需证明对于A1,……,An的并集中的每一个x,等式都成立。假设x正好属于m个集合(1 ≤ m ≤ n),不妨设它们为A1,……,Am。则x处的等式化为:

1

=

k

=

1

m

(

1

)

k

1

I

{

1

,

,

m

}

|

I

|

=

k

1.

{\displaystyle 1=\sum _{k=1}^{m}(-1)^{k-1}\sum _{\scriptstyle I\subset \{1,\ldots ,m\} \atop \scriptstyle |I|=k}1.}

m元素集合中的k元素子集的个数,是二项式系数

(

m

k

)

{\displaystyle \textstyle {\binom {m}{k}}}

的组合解释。由于

1

=

(

m

0

)

{\displaystyle \textstyle 1={\binom {m}{0}}}

,我们有:

(

m

0

)

=

k

=

1

m

(

1

)

k

1

(

m

k

)

.

{\displaystyle {\binom {m}{0}}=\sum _{k=1}^{m}(-1)^{k-1}{\binom {m}{k}}.}

把所有的项移到等式的左端,我们便得到(1 – 1)m的二项式展开式,因此可以看出,(*)对x成立。

第二种方法 设A表示集合A1,……,An的并集。于是:

0

=

(

1

A

1

A

1

)

(

1

A

1

A

2

)

(

1

A

1

A

n

)

,

{\displaystyle 0=(1_{A}-1_{A_{1}})(1_{A}-1_{A_{2}})\cdots (1_{A}-1_{A_{n}})\,,}

这是因为对于不在A内的x,两边都等于零,而如果x属于其中一个集合,例如Am,则对应的第m个因子为零。把右端的乘积展开来,便可得到等式(*)。

归纳法证明

编辑

S

1

=

n

(

A

1

)

+

n

(

A

2

)

+

n

(

A

3

)

+

+

n

(

A

n

)

{\displaystyle S_{1}=n(A_{1})+n(A_{2})+n(A_{3})+\cdots +n(A_{n})}

S

2

=

n

(

A

1

A

2

)

+

n

(

A

1

A

3

)

+

+

n

(

A

1

A

n

)

+

n

(

A

2

A

3

)

+

+

n

(

A

n

1

A

n

)

{\displaystyle S_{2}=n(A_{1}\cap A_{2})+n(A_{1}\cap A_{3})+\cdots +n(A_{1}\cap A_{n})\;+\;n(A_{2}\cap A_{3})+\cdots +n(A_{n-1}\cap A_{n})}

S

3

=

n

(

A

1

A

2

A

3

)

+

+

n

(

A

n

2

A

n

1

A

n

)

{\displaystyle S_{3}=n(A_{1}\cap A_{2}\cap A_{3})+\cdots +n(A_{n-2}\cap A_{n-1}\cap A_{n})}

S

n

=

n

(

A

1

A

2

A

3

A

n

)

{\displaystyle S_{n}=n(A_{1}\cap A_{2}\cap A_{3}\cap \cdots \cap A_{n})}

求证

n

(

A

1

A

2

A

3

A

n

)

=

S

1

S

2

+

S

3

+

(

1

)

n

1

S

n

.

{\displaystyle n(A_{1}\cup A_{2}\cup A_{3}\cup \cdots \cup A_{n})=S_{1}-S_{2}+S_{3}-\cdots +(-1)^{n-1}S_{n}.}

证明:

n

=

2

{\displaystyle n=2}

时,

n

(

A

1

A

2

)

=

n

(

A

1

)

+

n

(

A

2

)

n

(

A

1

A

2

)

=

S

1

S

2

.

{\displaystyle n(A_{1}\cup A_{2})=n(A_{1})+n(A_{2})-n(A_{1}\cap A_{2})=S_{1}-S_{2}.}

假设当

n

=

k

(

k

2

)

{\displaystyle n=k\ (k\geq 2)}

时,有

n

(

A

1

A

2

A

k

)

=

S

1

S

2

+

S

3

+

(

1

)

k

1

S

k

.

{\displaystyle n(A_{1}\cup A_{2}\cup \cdots \cup A_{k})=S_{1}-S_{2}+S_{3}-\cdots +(-1)^{k-1}S_{k}.}

n

=

k

+

1

{\displaystyle n=k+1}

时,

n

(

A

1

A

2

A

k

A

k

+

1

)

=

n

(

(

A

1

A

2

A

k

)

A

k

+

1

)

=

n

(

A

1

A

2

A

k

)

+

n

(

A

k

+

1

)

n

(

(

A

1

A

2

A

k

)

A

k

+

1

)

=

n

(

A

1

A

2

A

k

)

+

n

(

A

k

+

1

)

n

(

(

A

1

A

k

+

1

)

(

A

2

A

k

+

1

)

(

A

k

A

k

+

1

)

)

.

{\displaystyle {\begin{aligned}n(A_{1}\cup A_{2}\cup \cdots \cup A_{k}\cup A_{k+1})&=n{\Bigl (}(A_{1}\cup A_{2}\cup \cdots \cup A_{k})\cup A_{k+1}{\Bigr )}\\[1ex]&=n(A_{1}\cup A_{2}\cup \cdots \cup A_{k})+n(A_{k+1})\\[1ex]&\quad -n{\Bigl (}(A_{1}\cup A_{2}\cup \cdots \cup A_{k})\cap A_{k+1}{\Bigr )}\\[1ex]&=n(A_{1}\cup A_{2}\cup \cdots \cup A_{k})+n(A_{k+1})\\[1ex]&\quad -n{\Bigl (}(A_{1}\cap A_{k+1})\cup (A_{2}\cap A_{k+1})\cup \cdots \cup (A_{k}\cap A_{k+1}){\Bigr )}.\end{aligned}}}

∵ 当 \(n=k\) 时,上式成立,

n

(

A

1

A

2

A

k

+

1

)

=

S

1

S

2

+

S

3

+

(

1

)

k

S

k

+

1

.

{\displaystyle n(A_{1}\cup A_{2}\cup \cdots \cup A_{k+1})=S_{1}-S_{2}+S_{3}-\cdots +(-1)^{k}S_{k+1}.}

综上所述,当

n

2

{\displaystyle n\geq 2}

时,

n

(

A

1

A

2

A

n

)

=

n

(

A

1

)

+

n

(

A

2

)

+

+

n

(

A

n

)

[

n

(

A

1

A

2

)

+

n

(

A

1

A

3

)

+

+

n

(

A

n

1

A

n

)

]

+

[

n

(

A

1

A

2

A

3

)

+

]

+

(

1

)

n

1

n

(

A

1

A

2

A

n

)

.

{\displaystyle {\begin{aligned}n(A_{1}\cup A_{2}\cup \cdots \cup A_{n})=&\;n(A_{1})+n(A_{2})+\cdots +n(A_{n})\\[1ex]&\;-{\Bigl [}n(A_{1}\cap A_{2})+n(A_{1}\cap A_{3})+\cdots +n(A_{n-1}\cap A_{n}){\Bigr ]}\\[1ex]&\;+{\Bigl [}n(A_{1}\cap A_{2}\cap A_{3})+\cdots {\Bigr ]}\\[1ex]&\;-\cdots +(-1)^{n-1}n(A_{1}\cap A_{2}\cap \cdots \cap A_{n}).\end{aligned}}}

Copyright © 2088 世界杯欧洲区_世界杯中国 - rd508.com All Rights Reserved.
友情链接